Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis
نویسندگان
چکیده
Wnt regulates bone formation through β-catenin-dependent canonical and -independent noncanonical signaling pathways. However, the cooperation that exists between the two signaling pathways during osteoblastogenesis remains to be elucidated. Here, we showed that the lack of Wnt5a in osteoblast-lineage cells impaired Wnt/β-catenin signaling due to the reduced expression of Lrp5 and Lrp6. Pretreatment of ST2 cells, a stromal cell line, with Wnt5a enhanced canonical Wnt ligand-induced Tcf/Lef transcription activity. Short hairpin RNA-mediated knockdown of Wnt5a, but not treatment with Dkk1, an antagonist of Wnt/β-catenin signaling, reduced the expression of Lrp5 and Lrp6 in osteoblast-lineage cells under osteogenic culture conditions. Osteoblast-lineage cells from Wnt5a-deficient mice exhibited reduced Wnt/β-catenin signaling, which impaired osteoblast differentiation and enhanced adipocyte differentiation. Adenovirus-mediated gene transfer of Lrp5 into Wnt5a-deficient osteoblast-lineage cells rescued their phenotypic features. Therefore, Wnt5a-induced noncanonical signaling cooperates with Wnt/β-catenin signaling to achieve proper bone formation.
منابع مشابه
Interaction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملThe Wnt5a/Ror2 noncanonical signaling pathway inhibits canonical Wnt signaling in K562 cells.
Wnt5a has been shown to be involved in cancer progression in a variety of tumor types, and regulates multiple intracellular signaling cascades; it is a representative ligand that activates a noncanonical Wnt signaling pathway. The mechanism governing how Wnt5a determines the specificity of these pathways and the relationship with tumorigenesis is still unknown. In this study, we aimed to clarif...
متن کاملWnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation.
The mechanisms that regulate hematopoietic stem cell (HSC) fate decisions between proliferation and multilineage differentiation are unclear. Members of the Wnt family of ligands that activate the canonical Wnt signaling pathway, which utilizes beta-catenin to relay the signal, have been demonstrated to regulate HSC function. In this study, we examined the role of noncanonical Wnt signaling in ...
متن کاملNoncanonical Wnt signaling promotes apoptosis in thymocyte development
The Wnt-beta-catenin signaling pathway has been shown to govern T cell development by regulating the growth and survival of progenitor T cells and immature thymocytes. We explore the role of noncanonical, Wnt-Ca(2+) signaling in fetal T cell development by analyzing mice deficient for Wnt5a. Our findings reveal that Wnt5a produced in the thymic stromal epithelium does not alter the development ...
متن کاملNoncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors
The liver provides vital metabolic, exocrine and endocrine functions in the body as such pathological conditions of the liver lead to high morbidity and mortality. The liver is highly regenerative and contains facultative stem cells that become activated during injury to replicate to fully recover mass and function. Canonical Wnt/β-catenin signaling plays an important role in regulating the pro...
متن کامل